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What is Bayesian statistics and why everything else is wrong
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Abstract

We use a single example to explain (1), the Likelihood Principle, (2) Bayesian statistics, and (3)
why classical statistics cannot be used to compare hypotheses.

1. The Slater School

The example and quotes used in this paper come from Annals of Radiation: The Cancer at Slater School by
Paul Brodeur in The New Yorker of Dec. 7, 1992. We use the example only to make a point, not a serious
analysis.

The Slater school is an elementary school in Fresno, California where teachers and staff were “concerned about the
presence of two high-voltage transmission lines that ran past the school . . . .” Their concern centered on the “high
incidence of cancer at Slater. . . .” To address their concern, Dr. Raymond Neutra of the California Department of
Health Services’ Special Epidemiological Studies Program conducted a statistical analysis on the

“eight cases of invasive cancer, . . . , the total years of employment of the hundred and forty-five
teachers, teachers’ aides, and staff members, . . . , [and] the number of person-years in terms of National
Cancer Institute statistics showing the annual rate of invasive cancer in American women between the
ages of forty and forty-four — the age group encompassing the average age of the teachers and staff at
Slater — [which] enabled him to calculate that 4.2 cases of cancer could have been expected to occur
among the Slater teachers and staff members . . . .”

For the purpose of our illustration we assume (1) that the 145 employees develop (or not) cancer independently
of each other and (2) that the chance of cancer, θ, is the same for each employee. Therefore X , the number of
cancers among the 145 employees, has a binomial (145, θ) distribution; we write X ∼ Bin(145, θ). For any integer
x between 0 and 145, Pr[X = x|θ] =

(

145

x

)

θx(1− θ)145−x. The data turned out to be x = 8.

According to Neutra, the expected number of cancers is 4.2. Noting that 4.2/145 ≈ 0.03, we formulate a theory:
Theory A: θ = 0.03,

which says that the underlying cancer rate at Slater is just like the national average. To address the concern at
Slater school we want to compare Theory A to alternatives that would better account for the large number of
cancers. To illustrate, we propose three additional theories. All together we have

Theory A: θ = 0.03,
Theory B: θ = 0.04,
Theory C: θ = 0.05, and
Theory D: θ = 0.06.

2. The Likelihood

To compare the theories we see how well each one explains the data. That is, for each value of θ, we use
elementary results about binomial distributions to calculate

Pr[X = 8|θ] =

(

145

8

)

θ8(1− θ)137
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which says how well each value of θ explains the observed data X = 8. The results are

Pr[X = 8|θ = .03] ≈ 0.036

Pr[X = 8|θ = .04] ≈ 0.096

Pr[X = 8|θ = .05] ≈ 0.134

Pr[X = 8|θ = .06] ≈ 0.136,

or roughly in the ratio of 1:3:4:4. Thus we can make statements such as “Theory B explains the data about 3 times
as well as Theory A”; Theory C explains the data slightly better than Theory B”; and “Theories C and D explain
the data about equally well.”

One point to notice is that Pr[X |θ] is a function of two variables: X and θ. Once X = 8 has been observed, then
Pr[X = 8|θ] describes how well each theory, or value of θ, explains the data. It is a function only of θ; no value of
X other than 8 is relevant. For instance, Pr[X = 9|θ = .03] is irrelevant because it does not describe how well any
theory explains the data. This principle is central to Bayesian thinking and is called the Likelihood Principal. The
Likelihood Principal says that once X has been observed, say X = x, then no other value of X matters and we
should treat Pr[X |θ] simply as Pr[X = x|θ], a function only of θ. A more complete explanation and many thought
provoking examples can be found in Berger and Wolpert, 1988. The function `(θ) = Pr[X = 8|θ] is called the
likelihood function.

The likelihood function says how well each theory explains the data and therefore contains all the information
for distinguishing among theories based on the data. For some purposes computing the likelihood function is all
that is necessary. But for other purposes it might be useful to combine the information in the Slater data with
information from other sources. That is the subject of the next section.

3. A Bayesian Analysis

In fact, there are other sources of information about whether cancer can be induced by proximity to high-voltage
transmission lines. Here we consider just two. First, there have been epidemiological studies, some showing a
positive correlation between cancer rates and proximity and others failing to show such correlations. And second,
there have been statements from physicists and biologists that the energy in magnetic fields associated with high-
voltage transmission lines (purported to be the cause of increased cancer rates) is too small to have an appreciable
biological effect.

The information is inconclusive. For the sake of illustration, suppose we judge the arguments on the two sides
of the issue to be equally strong. We can summarize that judgement with a statement such as “Theory A is just
as likely to be true as false” and express it mathematically as Pr[A] ≈ 1/2 ≈ Pr[B] + Pr[C] + Pr[D]. And suppose
further that we have no information to suggest that any of B, C or D is more likely than any other. We can express
that as Pr[B] ≈ Pr[C] ≈ Pr[D] ≈ 1/6. All together we have

Pr[A] ≈ 1/2 Pr[B] ≈ Pr[C] ≈ Pr[D] ≈ 1/6.

These probabilities are called the prior distribution. Their interpretation is that they summarize our knowledge
about θ prior to incorporating the information from Slater.

An application of Bayes’ Theorem, or simply the definition of conditional probability yields

Pr[A|X = 8] =
Pr[A and X = 8]

Pr[X = 8]
(1)

=
Pr[A and X = 8]

Pr[A and X = 8] + Pr[B and X = 8] + Pr[C and X = 8] + Pr[D and X = 8]

=
Pr[A] Pr[X = 8|A]

Pr[A] Pr[X = 8|A] + Pr[B] Pr[X = 8|B] + Pr[C] Pr[X = 8|C] + Pr[D] Pr[X = 8|D]

≈
(1/2)(.036)

(1/2)(.036) + (1/6)(.096) + (1/6)(.134) + (1/6)(.136)

≈ 0.23.
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Similar calculations yield

Pr[A|X = 8] ≈ 0.23 Pr[B|X = 8] ≈ 0.21 Pr[C|X = 8] ≈ Pr[D|X = 8] ≈ 0.28.

These probabilities are called the posterior distribution. Their interpretation is that they summarize our knowl-
edge about θ after incorporating the information from Slater. We can make such statements as “The four theories
seem about equally likely.” and “The odds are about 3 to 1 that the underlying cancer rate at Slater is higher than
0.03.”

A Bayesian analysis uses the posterior distribution to summarize the state of our knowledge. The posterior
distribution combines information from the data at hand expressed through the likelihood function, with other
information expressed through the prior distribution.

4. A non-Bayesian Analysis

Classical statisticians, to test the hypothesis H0 : θ = .03 against the alternative hypothesis H1 : θ > .03,
calculate the P-value, defined as the probability under H0 of observing an outcome at least as extreme as the
outcome actually observed. In other words,

P-value = Pr[X = 8|θ = .03] + Pr[X = 9|θ = .03] + Pr[X = 10|θ = .03] + · · ·+ Pr[X = 145|θ = .03]

which, for the Slater problem, turns out to be P-value ≈ 0.07.

We claim the P-value should not be used to compare hypotheses because

1. hypotheses should be compared by how well they explain the data,

2. the P-value does not account for how well the alternative hypotheses explain the data, and

3. the summands Pr[X = 9|θ = .03], . . . , Pr[X = 145|θ = .03] are irrelevant because they do not describe how
well any hypothesis explains any observed data.

The P-value does not obey the Likelihood Principle because it uses Pr[X = x|θ] for values of x other than the
observed value of x = 8. The same is true for all classical hypothesis tests and confidence intervals. They do not
obey the Likelihood Principle and cannot be used to compare scientific theories or hypotheses. See Berger and
Wolpert, 1988 for a full explanation.

5. Discussion

Using the Slater school as an example we have illustrated the Likelihood Principle, a Bayesian analysis and a
non-Bayesian analysis. In the interest of directness we have so far ignored several points which we now treat more
fully.

• Our analysis used four discrete values of θ. A better approach is to treat θ as continuous with values between
0 and 1. The likelihood function is still `(θ) =

(

145

8

)

θ8(1− θ)137. It is plotted in Figure 1. Figure 1

Figure 1 about here
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Figure 1. The likelihood function `(θ) = Pr[X = 8|θ] ∝ θ8(1− θ)137

A continuous treatment would entail the use of prior and posterior probability density functions f(θ) and
f(θ|X = 8) rather than prior and posterior probabilities. The posterior density for any value of θ would be
calculated as

f(θ|X = 8) =
f(θ, 8)

Pr[X = 8]
=

f(θ) Pr[X = 8|θ]
∫

f(θ) Pr[X = 8|θ] dθ
.

A continuous treatment with a reasonable prior density would yield an answer quantitatively similar to that
from our discrete treatment. In either case, the Likelihood Principle is correct and the P-value should not be
used to compare values of θ.

• A Bayesian analysis divides information into two types. One type is the data being analyzed — 8 cancers in
145 employees in our example — which is encoded in the likelihood function. The other type is everything
else and is encoded in the prior distribution. The prior distribution may be based on earlier studies of similar
phenomena, as in the Slater example, on our best understanding of the phenomenon being investigated, as
in the Slater example, on previous data from directly relevant studies, or on anything else we deem relevant.

The Bayesian paradigm says that the investigator should use a prior distribution but does not say what
that prior distribution should be. The investigator is free to choose any prior he or she desires. In principle
the choice should accurately reflect the investigator’s knowledge about the phenomenon under study. But
however it is chosen, the choice of prior leaves an analysis open to charges of subjectivity.

Bayesians reply to the charge in various ways. Some (See Berger and Berry, 1988, for example.) say sub-
jectivity is good, that different scientists reach different conclusions because they have different priors, and
that making the priors explicit (as opposed to the apparent objectivity of classical statistics) is a good thing.
Others heed the call for objective analysis by proposing prior distributions that satisfy some criterion of
objectivity and argue that such priors ought to be adopted and accepted as default in cases where true prior
information is weak or where there is strong disagreement about what the prior distribution should be. See
Kass and Wasserman, 1996 for a review.

Yet another approach is to examine sensitivity of the posterior distribution to changes in the prior. Following
this approach, a statistician may propose an entire class of prior distributions, or a set of deviations from an
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initial prior, meant to approximate the set of all prior distributions that would be used by reasonable people.
Each prior distribution in the class can be updated to create a class of posterior distributions which can be
examined for sensitivity. As an example, one could compute upper and lower bounds on Pr[A|X = 8] over
the set of all prior probabilities belonging to some reasonable class.

In the Slater example the posterior is highly sensitive to the choice of prior and the range of posterior
probabilites would be large. And that’s because there is not much information in the data to distinguish
between the four values of θ. The likelihood function varies only by a factor of about 4 to 1 for the values
of θ we consider. In other problems the likelihood function can vary by many orders of magnitude. There,
the sharpness of the likelihood function would overwhelm distinctions between prior distributions in quite a
large class.

The question of sensitivity is a question of whether the likelihood function is sharply peaked relative to priors
in a reasonable class. If the likelihood is sharp then the posterior is insensitive to the choice of prior. In
the Slater example, the likelihood function clearly points to values of θ less than about 0.15. Had our prior
information been weaker, leading us to consider values of θ in the whole unit interval, then the likelihood
function would have appeared sharply peaked over the range of a priori reasonable values of θ. Our actual
prior restricted attention to θ ∈ [.03, .06], a range over which the likelihood function is relatively flat.

• Bayesian analyses are sometimes criticized as philosophically unsound. Specifically, the Bayesian analysis
treats θ as though it were a random variable whereas classical analysis treats θ as a fixed constant, albeit
unknown. And the truth, at least the notional truth behind the binomial sampling model for X , is that θ is
fixed, not random. So there is no meaning to the concept of θ as a random variable. That is, θ either is or
is not equal to 0.03. There is no such thing as Pr[θ = .03]. Furthermore, probability is defined as the limit,
as the number of trials gets large, of a relative frequency in a sequence of events. Since there is only one
instance of θ and not an infinite sequence of θi’s, quantities such as Pr[θ = .03] have no meaning.

The Bayesian reply is twofold. First, treating θ as a random does not mean that we believe θ is random.
Rather, it expresses the state of our knowledge about θ. A sharply peaked distribution expresses strong
knowledge about θ; a relatively flat distribution expresses weak knowledge. The distribution describes us and
our knowledge, not some fundamental property of θ.

And second, the relative frequency definition of probability is too confining. Partly because the degree of
knowledge interpretation is so useful, probability can and should be interpreted broadly enough to accomodate
it. Like any other mathematical construct, its definition is purely mathematical, not tied to the physical reality
of whether there exists an infinite sequence of events. Any mathematical construct can be applied wherever
it is useful. And the Bayesian paradigm is useful.

• The distinction between Bayesian and classical statistics would be of only philosophical interest if both
approaches led to similar conclusions. So it is worthwhile investigating whether they do. We saw in the Slater
example that the classical P-value is approximately 0.07, or very close to the widely accepted critical value of
0.05, below which null hypotheses are rejected. In other words, a classical analysis of the Slater data is very
close to rejecting H0 : θ = .03. On the other hand, both the likelihood function and the Bayesian analysis say
that the evidence against θ = .03 is not very strong — only about 3 or 4 to 1. The two approaches disagree.

The question of when Bayesian and classical analyses yield similar results, or when a classical P-value can be
interpreted as approximately a Bayesian posterior probability, has been studied in some generality. A good
place to begin dipping into the literature is the pair of papers Casella and Berger, 1987 and Berger and Sellke,
1987 and the accompanying discussion.

• In assessing the evidence at Slater school Dr. Neutra “went on to estimate that as many as a thousand out
of a total of eight thousand schools in California might be situated near power lines, and he concluded that
‘clusters like this in schools near power lines could well occur by chance’ ”. Neutra’s reasoning went something
like this: Of the thousand or so schools near power lines, it is the one or ones with the largest number of
cancer cases that will call itself to our attention as a possible cancer cluster. If in fact θ = 0.03, then it is
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quite possible that at least 1 of the 1000 schools will have as many as 8 cancers. So the fact that one school
has 8 cancer cases is not much evidence against H0 : θ = 0.03.

To see how this reasoning might be made more formal, suppose there are 1000 schools in California situated
near power lines each having 145 employees at risk. Let Xi be the number of cancer cases in school i and
define Y = max(Xi). Then a classical P-value would be

P-value = Pr[Y ≥ 8|θ = .03]

= 1− Pr[Y ≤ 7|θ = .03]

= 1−

1000
∏

i

Pr[Xi ≤ 7|θ = .03]

≈ 1− 0.92829741000

≈ 1.

Even if there were only 10 schools instead of 1000, the P-value would be 1− 0.928297410 ≈ 0.52 and Neutra
is right: there is not much evidence against H0, at least according to the classical notion of evidence.

A Bayesian analysis would begin with the likelihood function

`(θ) = Pr[Y = 8|θ]

= Pr[Y ≤ 8|θ]− Pr[Y ≤ 7|θ],

which yields, for our four θ’s,

`(.03) ≈ 1.3e−14, `(.04) ≈ 1.9e−60, `(.05) ≈ 1.7e−156, `(.06) ≈ 5.1e−308,

which favorsTheory A over the other three theories by 46 orders of magnitude or more. The likelihood function
for all values of θ is plotted in Figure 2. It has its maximum near θ = 0.015 which is the value of θ most Figure 2
strongly supported by this likelihood function. In fact, this likelihood function strongly suggests that θ is less
than about 0.02.

Figure 2 about here
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Figure 2. The likelihood function Pr[Y = 8|θ]

Of course our formalism is only approximate. There are not exactly 1000 California schools near power lines,
they don’t all have 145 employees and, most importantly, Slater is not necessarily the one with the largest
number of cancers. A better analysis of the data would probably yield a conclusion somewhere between that
reached by treating Slater alone and that reached by considering only the maximum of the Xi’s.
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