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Abstract 
 
The underlying processes that generate economic series such as inflation, unemployment or output 
gaps are potentially quite complex. Undoubtedly that makes it very difficult to forecast them and has 
traditionally bent attention to relatively simple linear approaches when trying to model them. Trying 
to capture nonlinear relationships among inflation and its determinants, this paper applies Artificial 
Neural Networks (ANN) to forecast Costa Rican inflation.  A innovative technique that systematically 
discriminates among different networks in order to overcome the problem of “over-fitting” a ANN 
was applied.  Forecasts are compared with those obtained from “thick” models and traditional linear 
techniques. The potentially complex nonlinear relationships between inflation and its short run 
determinants in an expectations-augmented Phillips Curve scheme are captured with a 
systematically chosen ANN.  Forecasts at different horizons are computed in a rolling exercise in 
order to test the hypothesis of a better performance of the nonlinear parameterization.  Evidence 
shows that linear techniques do not outperform ANN and, in the case of a Phillips Curve, networks 
forecasts statistically improve upon linear approaches especially for short run forecast horizons.  In 
most cases, “thick” modeled ANN’s forecasts showed a weak performance compared with 
systematically chosen ANNs. 
 

Resumen 
Los procesos generadores de series temporales económicas como inflación, desempleo o brecha del 
producto son potencialmente muy complejos.  Esto sin duda dificulta la tarea de su pronóstico y ha 
hecho que tradicionalmente se opte por especificaciones lineales a la hora de modelar tales procesos.  
En el documento aplica la técnica de redes neuronales artificiales (RNA) para pronosticar la inflación 
en Costa Rica capturando potenciales relaciones no lineales entre esta variable y sus determinantes.  
Se utiliza una innovadora técnica que discrimina sistemáticamente entre diferentes arquitecturas de 
red para evitar el problema de “sobreentrenamiento”.  Los pronósticos obtenidos a partir de este 
procedimiento de selección sistemática son comparados con aquellos obtenidos al aplicar el método 
de modelos “densos” y con los extraídos de técnicas lineales tradicionales de estimación 
econométrica.  Las potenciales relaciones complejas y no lineales entre la inflación y sus 
determinantes de corto plazo en una curva de Phillips aumentada son capturadas con redes 
neuronales elegidas sistemáticamente. Con el propósito de contrastar el desempeño del método no 
lineal de RNA  con el de métodos lineales, los pronósticos se efectúan para diferentes horizontes y 
siguiendo un ejercicio de “rolling”. La evidencia señala que las técnicas lineales no superan a las RNA 
y que, en el caso de la Curva de Phillips y especialmente para horizontes cortos de pronóstico, 
resultados obtenidos con las redes son estadísticamente superiores.  En la mayoría de los casos los 
modelos “densos” de RNA mostraron un débil desempeño cuando se compararon con los de redes 
sistemáticamente elegidas. 
 
 
__________________________________  
 
JEL Classification: C45, C53, E37 Key words: Forecasting, inflation, neural networks.  
 

esquivelmm@bccr.fi.cr 

 

  

mailto:esquivelmm@bccr.fi.cr


2 
 

1 Introduction 
 
The underlying processes that generate economic series such as inflation, unemployment or output 

gaps are potentially quite complex. Undoubtedly that makes it very difficult to forecast them and 

has traditionally directed attention to relatively simpler linear approaches when trying to model 

them and when facing the task of forecasting them. 

Stock, J. and Watson, M. (1999) signaled the potential improvement in forecast that incorporating 

nonlinear relations between inflation and the chosen independent variables will yield when 

compared to a traditional Phillips Curve estimated by linear techniques. Some authors1 have 

reported a performance of nonlinear forecasting methodologies that is at least as good as 

conventional linear parameterizations. For the case of the Costa Rican economy, Solera (2005), in a 

first approach to forecast inflation by using Artificial Neural Networks (ANN), arrived to the same 

conclusion with a rather monetarist set of information that included monetary aggregates and lags 

of the dependant. 

When estimated by means of linear methods, structural specifications of Costa Rican inflation have 

shown a relatively poor forecast performance compared to non structural ones.  This may be due to 

the absence of nonlinear relationships between variables that traditional econometric theory 

imposes. 

ANN modelling has been gaining attention as an attractive technique for estimation and forecasting 

in economics.  The chief advantage of the ANN methods is that they are free from the assumption of 

linearity that is commonly imposed in order to make the traditional methods tractable.  Most of the 

applications have been developed in financial statistics and exchange rates2.  Applications on 

macroeconomic time series have been limited in number3.  However, those works usually share a 

common limitation: they do not implement standard practices of ANN estimation such as early 

stopping, which has shown to be quite successful in some works4. 

This paper evaluates whether for the case of Costa Rica and based on different sets of information, 

the nonlinear methodology of ANN significantly improves upon inflation forecasts obtained by 

traditional linear methods.  Three models are analyzed: an expectation-augmented Phillips Curve, a 

Treasury Bills Model and a Monetarist Model based on the work of Solera op. cit.  A specific 

technique for each model is selected based on rolling root mean square errors of out-of-sample 

forecasts and some tests to discriminate among them. The accuracy of non-nested models is then 

compared based on the same criteria. 

When the ANN method is implemented, several parameters need to be set.  As a byproduct of the 

test mentioned above, the paper exposes several procedures for setting an optimal network and 

implements two of them for contrasting their results.   

                                                            
1 Bukhari and Hanif (2007), Chen and Swanson (2001), McNeils and McAdam (2004), Moshiri and Cameron 
(2000) and Nakamura (2005), for example. 
2 Fernández-Rodríguez, González-Martel and Sosvilla-Rivero (2000) and Refenes and White (1998) are two 
examples of papers on financial applications. 
3 See Stock and Watson (1998) Chen, Racine and Swanson (2001) and Solera (2005) for instance. 
4 See Nakamura op. cit. 
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The document is organized as follows: in the next section some basic elements of ANN theory are 

exposed giving special emphasis to the problem of optimally setting a specific network and exposing 

what the problem of over-fitting is and why is important to control for it.  After that, in section three 

all methodological aspects are covered; the general method for comparing forecasts is explained, 

the three lineal models selected for comparison are shortly exposed and, with some detail, the two 

techniques for optimizing forecasts from networks are covered.  Additionally, section three shortly 

explains Diebold and Mariano (1995) and Fair and Shiller (1990) tests for discriminating forecasts 

which are then applied for such purposes.  Section four is devoted to briefly expose the main results; 

firstly a forecast accuracy comparison of techniques for each model is exposed, then the best 

techniques from each model are weighted against each other. Section five concludes and is followed 

by the bibliographical references and finally all relevant appendices. 

2 Theoretical background 
Since ANN models take a set of inputs and produce a matching set of outputs according to some 

mapping relationship, they can be loosely classified as vector mappers.   In spite of its suggestive 

name, an ANN is simply a parameterized nonlinear function that can be fitted to data in order to get 

a desired forecast.  The nonlinear function combines several building blocks on a transfer function 

which can be, for example, a hyperbolic tangent or a logistic function. 

When an ANN is shaped, a specific architecture must be provided.  This architecture includes the 

number of hidden nodes (“hidden neurons” in the networks jargon) and “hidden layers”.  

Additionally it is possible to allow a linear component (direct connections between input and output 

vectors) to be part of the net.  

The basic structure of an ANN that has an input vector (X) of size m, q hidden neurons, one layer and 

an output vector can be written as follows: 

 
0

1

,
q

j j

j

F X W F G x  (2.1) 

Where: 

,F X W =    Output vector of the network. 

andF G =  Activation functions for the final step and the q hidden nodes respectively.  Even though 

these functions can take any functional form, nonlinear sigmoidal ones5 are quite 

popular, especially for G. 

1 21, , ,..., mX X X X = Input vector.  Notice that it includes an intercept. 

                                                            
5 RATS 6.0 offers 3 options of sigmoidal functions for “squashing” the node outputs, a Logistic one: 

1 1 ue ; and two hyperbolic tangent: tanh u and tanh 2u . Where u is the basic output of a node. 

The logistic function was used in all estimations in this study. 
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1 2, ,..., ,q jW = Matrix of parameters or weights.  Each component i  stands for an m x 1 

vector of weights that maps the m input variables to one of the q hidden 

nodes.  
j
is a q x 1 vector of weights relating each one of the q hidden 

nodes to the final output vector. 

How exactly does an ANN fit the data for getting a forecasted value of the output series?  Since a 

back-propagation technique is commonly used, we will be working only with back-propagation 

networks (BPN) models.  The procedure goes as follows: Firstly, input and output vectors are read 

into the BPN model, then, after randomly selecting a set of parameters, the network processes the 

inputs and generates a predicted output vector.  After that, a mean square error (MSE) is generated 

by comparing such output vector with the series of observed outcomes.  Then the network adjusts 

the initial set of parameters in the direction of the negative gradient of the MSE, produces a new 

output vector, calculates a new MSE, adjust the parameters and so on. 

Figure 1 might help to conceptualize how an ANN is built and how it fit input and output vectors. 

Figure 1.   

An Artificial Neural Network Structure. 

 

 

 

 

    

  

 

 

The network in the figure is modeled with m input units (X), two hidden neurons (G) in a single hidden layer and one output vector(F).  δ’s 

and ω’s are the hidden and output vector weights respectively.  Doted lines going directly from the X’s to the output vector represent the 

optional setting of direct (linear) connections. 

 

The above described iterative process is known as learning or training process in the ANN jargon.  

One can train a net to learn the relationship between input and output vectors as many times as 

desired or until it reaches a given magnitude of the MSE.  

Most of the ANN appeal rests on its flexibility to approximate a wide range of functional 

relationships between variables.   Hornik, Stinchcombe and White (1989) explain how, given enough 

level of complexity (that is, a sufficiently high number of nodes and learning periods), neural 

networks are able to approximate any function arbitrarily well.  Notice though that there might be 

two kinds of catches.  Firstly, when an ANN is highly complex, the learning process becomes quite 

slow, especially if the data set is large.  Secondly, one might reach a very low level of MSE in the 

training process, but ANNs trained a large number of times are prone to produce a good fit into the 

X1 

X2 

Xm 

  …  Error 
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learning sample but a disappointing performance in out-of-sample  forecast.  In section 3.3 there will 

be more to say about such problem and the early stopping procedures proposed to deal with it. 

Having briefly explained the basic features of setting an ANN and how it works, it should be clear 

that given a set of information (that is a set of input and output vectors), the forecasted series 

obtained may vary depending on 3 factors: The number of hidden nodes (q), the number of training 

iterations that the network is permitted to take (Z) and whether direct connections are allowed.  

Additionally, even when a network is set by fixing q, Z and establishing whether there are any direct 

connectors, the output series might well vary due to the different set of randomly selected initial 

values of the weighting matrix.  Yet, this last variation will be very small and not systematically 

biased6.  When working with ANN, getting the most from a given set of information will consist in 

finding the combination of those factors that produces the best forecast performance.  As it will be 

explained in section 3.3, there is a variety of proposals that try to accomplish this.  Although none of 

them is theoretically superior, we can at least contrast which one is more backed by our data. 

3 Methodological Approach and data. 

3.1 General Approach. 
The next general strategy was followed in the study.   We start with three general non nested 

models whose dependent variable is inflation rate.  An expectation-augmented Phillips Curve (PC), a 

Treasury Bills Model (TB) and a Monetarist Model (MM)7.   For each model, different forecast series 

are computed by using at least three techniques8.  Then, out-of-sample forecast performance 

statistics are computed in order to discriminate among techniques.  Finally, the best forecast 

technique for each non nested model is compared with the other two best forecasts in order to 

determine whether there is a combination of model and technique that statistically outperformed 

the others. 

For each model, one of the techniques is the traditional linear ordinary least square.  The remaining 

two (or three) are nonlinear in the sense that they use ANN for getting the forecasts.  It must be 

clear that the data set which is fed into each model is exactly the same among competing 

techniques.   This is achieved by dividing the sample of available observations into two sections, a 

training section and a contrast section.  The first one is used, in the case of linear models, for 

estimating OLS coefficients, and in the case of ANN techniques, for training the corresponding 

network and getting the W matrix of weights. The second one serves for comparing forecasted 

values with inflation realizations by means of constructing root mean square error statistic, which is 

the measure used for contrasting techniques and models.  

                                                            
6 Most modern software includes a “seed” instruction for controlling the random selection of parameters.  
RATS offers such instructions which ensures, at least into a single program execution, that the initial set of 
random weights is fixed, so it is possible to control for this variation. 
7 Although the name used for this model is quite similar to the Monetary Model which is currently used at the 
Central Bank, it has to be clear that they are not the same. 
8 In the case of the MM model, a fourth set of forecasts series was also estimated by using an ANN set 
according to Solera (2005).  This was in order to quantify a possible gain from the early stopping procedure 
that is being firstly applied in this work to Costa Rican data. 
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Forecasts were obtained in an 8-step rolling scheme for one, two, four and eight quarters ahead 

horizons (h).  Following this, in order to maximize the number of data points available, the date that 

determines the limit between training and contrast samples varies according to h and the specific 

rolling step. In any case, all model’s first-rolling-step was set to start in 2007Q3, 2007Q2, 2006Q4 

and 2005Q4 for h=1,2,4 and 8 respectively9.  All series are quarterly and all forecasts are real time-

static. 

3.2 The Three Lineal Models.  
Exposing the linear version of the three models might be a friendly way to clarify which information 

was provided and why those models were chosen in the first place.  The set of information supplied 

in each case was based firstly on the possibility to compare results among non nested models (this is 

why quarterly data was used); secondly it was based on recent studies that identify variables, lags 

and samples for each model, this was subject to find a lineal version that did not have specification 

problems when quarterly data are used10. 

3.2.1 Phillips Curve. 

Most macroeconomic models include a version of a Phillips Curve describing the short run dynamics 

of prices.  Despite its theoretical economic appeal, its forecast performance generally has not been 

superior to other non-structural specifications. 

Shocks on expectations or output gap may well affect inflation quite differently across different 

economics situations, levels of the variables or its current variance.  Then a likely reason for such a 

lack of forecast power may be that traditional econometrics directly assumes linear relationships 

among variables involved in the Phillips Curve when they might be nonlinearly related.   

The linear version of the Phillips Curve analyzed in this study is expectation-augmented similar to the 

one that is part of the Quarterly Projection Macroeconomic Model (QPMM).  The stochastic 

equation can be written down as follows:  

 1 4 2 6

b

t t t t
t
E Y  (3.1) 

Where: 

t  is year to year quarterly inflation rate in quarter t. 

4t
t
E  is one year ahead inflation expectation conditional to information available on quarter t. 

6

b

tY  is the output gap in quarter t-6. 

t is a normal, zero-mean, constant-variance disturbance term. 

                                                            
9 Notice that according with such a scheme, each forecast series is build of eight point forecasts corresponding 
to eight steps in the rolling procedure.   
10 The corresponding test of specification for each lineal version of the models can be found in appendix A. 



7 
 

From expression (3.1) the set of information that was given to the OLS and ANN’s procedures 

corresponds to t  (output vector) and 4 6, b

t t
t
E Y   (input vector).  In this case the total sample 

goes from 1991Q1 through 2008Q4.  

 

3.2.2 Treasury Bills Model. 

Since October 2001, the Central Bank of Costa Rica carries out a forecast combination of inflation 

through grouping a set of models and producing a single forecast that combines all common and 

complimentary information.  One of these models is the so-called Treasury Bills Model11.   

The latest version of the Treasury Bills Model uses monthly data and the stochastic version of its 

equation is the following: 

 
3 3

0

1 2

t i t i i t i t

i i

F  (3.2) 

Where: 

t  is year to year monthly inflation rate in quarter t. 

t iF  is year to year percentage change in the net balance of bond debt of the Costa Rican 

Government valued at market prices in quarter t. 

t is a normal, zero-mean, constant-variance disturbance term. 

More recently, in Mora and Rodríguez (2009), the authors found that the Treasury Bills Model seems 

to show a better forecast performance among all models in the forecast combination.  Additionally, 

they show that in some cases this model seems to encompass the other models when computing an 

inflation forecast. 

Due to the evidence mentioned above, one may wonder whether is it possible to improve upon such 

a successful forecast performance by trying a nonlinear estimation that uses the same set of 

information as the Treasury Bills Model.  Additionally, it would be valuable to know whether the best 

forecast from this model outperforms the one that is identified as the best from the Phillips Curve 

Model.  In order to carry out this comparison, it was decided to estimate the Treasury Bills equation 

with quarterly data just as the Phillips Curve of the last section was fitted.  Then, the equation finally 

estimated in this work was: 

 0 1 1 1 1t t t tF  (3.3) 

where all variables are the same as in (3.2) but quarterly measured.  

                                                            
11 Details of how this model is incorporated to the forecast combination of inflation can be found in Saborío 
and Solera (2004). 
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It follows then that the set of information that was fed into the statistical procedures is formed by t  

(output vector) and 
1 1,t tF   (input vector).  In this case the total sample goes from 1997Q3 

through 2008Q4 as this is the same sample used in the last documented estimation of this model in 

the Central Bank12. 

 

3.2.3 Monetarist Model. 

The first work in which the ANN technique was implemented to forecast inflation in Costa Rica is 

Solera (2005).  In this study the author compares the forecast performance of ANN with 6 models 

then used at the Central Bank to forecast inflation.  The author tries three different sets of 

information for training his networks and, based on RMSE measures, concludes that the best set 

contains a series of inflation as output vector and the series of lags 1 through 4 of inflation and lags 1 

through 24 of M1 as input vector. 

The linear version of the model that was used to contrast results here is the following:  

 
8

0 1 1

1

1t t i t i t

i

M  (3.4) 

Where: 

t  is year to year inflation rate in quarter t. 

1tM is year to year percentage change of M1 in quarter t. 

Again, in order to compare results with those obtained from the Phillips Curve and the Treasury Bills 

Model, quarterly information was used.  This is different from what Solera (2005) reports since he 

uses monthly data.  The sample of the estimation goes from 1992Q1 through 2008Q4. 

 

3.3 Choosing Among Networks. 
When an ANN is specified, several factors need to be set, all of which determine how accurate the 

network adjusts realizations of the output vector.  Those factors comprise the selection of variables 

to be included into the input and output vectors, how many hidden layers the system will have, the 

number of hidden nodes (hereafter Q), whether to include direct connections and how many 

iterations the network is allowed to take (Z henceforth). 

In choosing variables for the input vector, those included into the competing linear models were 

matched.  Such a strategy ensures a sort of fair play for the forecasting competition. 

As for the number of hidden layers, there were not many alternatives.  The available software to 

manage ANN was RATS 6.0, which offers a single option of one hidden layer.  Aside was the question 

of whether to allow for direct connection between input and output vectors.  All estimations were 

                                                            
12 See Durán and Rojas (2007). 
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carried out under both options (with and without direct connections) and consistently better results 

were achieved under the last assumption.  Hereafter all ANN results will be from networks that do 

not include such direct relations. 

When selecting Q, a more difficult question is faced.  For finding the optimal number of hidden 

nodes, several formulae have been proposed in literature13, yet there is no theoretic solution for this 

problem.  It has been found that significantly different results are obtained across formulae.   

For dealing with the problem of which Q to use, a more empirical approach has been the rule.  

Solera (2005) and Nakamura (2005) for instance, select the number of nodes that minimizes the MSE 

into the training sample.  When implementing this procedure, it is common that MSE will decrease 

up to certain Q, and then grow or become quite volatile for larger numbers of hidden nodes. 

An interesting way to deal with the issue was proposed by Granger and Jeon (2004), they called it 

thick modelling strategy and it combines several ANN’s forecasts which are based on different Q’s.  

For combining all such forecasts they construct, for each forecasted period, a trimmed mean of the 

forecasts that result from each network specification.  McNeils and Mc Adam (2004) applied this 

thick modelling strategy by means of ranking the predicted values and then removing the 100*α% 

smallest and largest estimations.  The remaining 100*(1-2α%) are averaged.  These authors set α = 

5% and argue that the trimmed mean avoid the problem of finding optimal weights, which has to be 

faced in a more standard process of forecast combination. 

The selection of Z is a more obscure subject because it has been little explored at least in 

macroeconomic applications of ANNs.  This is not a trivial election due to the potential problem of 

over-fitting that networks undergo when they are allowed to iterate too many times.  As explained 

above, these systems are able to approximate functions arbitrarily well given enough complexity.  By 

means of increasing Z, it is possible to achieve smaller mean square errors into the training sample.  

Eventually an excessively trained network might produce a near perfect fit in-sample but quite 

disappointing out-of-sample predictions. 

When dealing with the problem of over-fitting, which is not common in macroeconomic applications 

of ANNs but standard in other fields, several early stopping procedures are applied.  Among the 

most common is the following validation based approach14.  Firstly, the sample is split into a training 

set and a validation set.  Then the training algorithm is executed only with the training set just until 

the MSE starts to grow on the validation set.  If there is a problem of over-fitting, such turn will occur 

long before the minimum MSE is reached on the training set. 

In view of these issues, we propose a method that systematically identifies a network based on its 

forecast performance; henceforth the method is referred to as systematic.  Firstly we select Q by 

means of increasing it until the MSE starts to grow into the training set.  For this we allowed Z to 

take a value of 10.00015.  Then with Q fixed, we select Z following the validation based approach of 

                                                            
13 For example, Masters (1994) suggests the following: 

1 2*Q rv  and 
* 5Q T r v , where Q* is 

the optimal number of hidden nodes, r and v are the number of series into the input and output vectors 
respectively, and T is the sample size of the training period. 
14 See Nakamura op. cit. for further details. 
15 When selecting Z, this value was as large as possible for not causing over-fitting problems. 
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Nakamura (2005).  In an iterative-nested-rolling process we set an initial value of Z=100, train the 

network and produce an h step ahead static forecast, we roll the train-forecast process for a two 

years period increasing the training set one period at the time, compute the MSE statistic and then 

repeat the process for Z=200, 300, … 10.000.  We run a separate program for h=1, 2, 4 and 8.   This 

systematic procedure was applied to the three alternative models listed above.  For each model and 

forecast horizon (h), it was then easy to identify from which level of Z the MSE starts to grow. 

As an example for illustrating the systematic procedure, Graph 1 shows how Q was selected for the 

case of the Phillips Curve Model.  In this case the RMSE decreases when the number of hidden nodes 

is increased, this happens up to Q=3, then this is the chosen number of nodes.  Now, with the same 

Phillips Curve Model example, and after fixing Q=3, Graph 2 shows the selection of Z when h=4 in 

the rolling procedure.  Notice that RMSE stop decreasing after Z=1200 which is then the number of 

training periods allowed in this specific case.  Appendix B contains the entire collection of network’s 

architectures and training periods for all the cases analyzed in the paper that were selected through 

this systematic approach.. 

Additionally, in order to contrast results of the systematic method, thick models combined through 

trimmed mean forecast were also computed for the three models and h=1,2,4,8.  In this case Q was 

allowed to take values ranging from 1 up to 10 and the number of training periods (Z) was selected 

on the basis of what was found for each model-h case in the systematic scheme. 
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3.4 Comparing Predictive Accuracy. 
As explained above, there will be three non-nested models: Phillips Curve, Treasury Bills and 

Monetarist.  Then for each model there will be three (four in the case of the Monetarist Model) 

forecasting techniques: lineal (OLS), systematic ANN and thick ANN models.  And for each technique, 

four forecast horizons: 1,2,4 and 8 quarters ahead.  In each specific case, a two-year rolling 

procedure is applied in order to get the RMSE statistic16, which is the measure we use to 

discriminate among competing forecasts. 

In the case of the Monetarist Model, a fourth set of rolling forecasts were also carried out with a 

network chosen as in Solera (2005), that is, selecting the Q that minimizes in-sample forecast 

performance and allowing as many training periods as necessary to reach an R2 of 0.95.  The idea is 

to determine whether there is any improvement in forecasting accuracy from applying the 

systematic or the thick models approach, which has not been tried before with Costa Rican data. 

Firstly, the three (or four) techniques are compared into each non-nested model.  This yields three 

winning techniques.  After that, those winning techniques among non-nested models are compared 

yielding the model-technique combination that gives the best out-of sample forecast.  Notice also 

that there are 4 of such separate competitions, one for each forecast horizon. 

Here comes up the question of whether a given forecast is statistically better than another one.  For 

answering this when dealing with the above explained forecast comparison, Diebold and Mariano 

(1995) and Fair and Shiller (1990) tests were used. 

                                                            
16 Notice that in all cases this will yield a series of 8 forecasted observations. 
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The first of those tests aims to contrast the null hypothesis of equal expected forecast accuracy 

against the alternative of different forecasting ability across models.  If L  is some loss function 

defined over the errors of prediction, then the null hypothesis of the test can be written as: 

 0 : 0A B

t t tH D E L L  (3.5) 

where  i

t
 corresponds to the error of model i when performing and h-step ahead forecast.  The 

test also uses the autocorrelation-corrected sample mean of tD when testing (3.5).  If m

observations and forecasts are available, the test statistic is therefore: 

 
1 2

ˆS V D D  (3.6) 

Where:  

1
1

0

1

ˆ ˆ ˆ
h

k

k

V D m s   , the 0
ˆ  parameter is the variance of the D  series and ˆ

k  is the 

corresponding covariance term which is obtained with the following formula: 

1

1
ˆ

m

k t t k

t k

D D D D
m

 

The authors show that under the null hypothesis of equal forecast accuracy S  is asymptotically 

normally distributed.  Then 0H  is rejected at 5% if 1.96S . 

On the other hand, the Fair and Shiller (1990) test is based on the argument that the information 

contained in one model’s forecast compared to that in another can be discerned by means of a 

regression of actual values on predicted values from the two models.  Such a test has two main 

advantages over the standard procedure of computing RMSEs when comparing alternative forecasts.  

Firstly, when the RMSEs of the two models are quite close, little can be concluded about the relative 

advantages of one model over the other.  Secondly, it is possible that even when the RMSE of one 

model is significantly smaller, the other may contain information not included in the first one.  The 

simple comparison of RMSE cannot test for this. 

The procedure is as simple as follows. If ˆ A

t h tY
 
is model’s A forecast of 

tY  made with information up 

to t-h and ˆB

t h tY  is the same forecast but coming from model B.  Then the next regression is run:  

 0
ˆ ˆA B

t t h A t h t t h B t h t t h t hY Y Y Y Y Y  (3.7) 

Now, if none of the two models contains useful information for h-periods-ahead forecast, then we 

will not reject separately neither 0 : 0AH nor 0 : 0BH .  If both models have independent 

information for the forecast, then those last null hypotheses will be separately rejected.  These two 

cases do not allow discriminating among the models.  On the other hand, if for instance A  is 
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nonzero, then model A contains further information than model B and it should be considered as a 

better forecaster. 

4 Results. 
For exposing our main results, first we will go across the three models exposed in section 3.2 

showing forecast statistics for each of the techniques.  That is, nested model comparison is shown 

first.    Then non-nested comparison is carried out by showing forecast statistics of the best 

technique of each model.  Diebold-Mariano and Fair-Shiller are shown in order to test consistency 

across specifications. 

 

4.1 Phillips Curve Model. 
Chart 1 compares forecast performance when Phillips Curve set of information is provided in the 

training (estimation) sample.   Notice that for all horizons the smaller RMSE is reached by means of 

the systematic ANN technique.  Yet, according with Diebold-Marino test, the difference is 

statistically significant only when compared with the thick model forecast.  When forecast horizon is 

one quarter, the three techniques are equally effective. 

 

Results from Fair and Shiller test is shown in Chart 2 which contains p-values of the corresponding 

parameters from a regression like (3.7).  In this case tY  is actual inflation rate, ˆ A

t h tY is the series of 

rolling forecast from the systematic technique, and ˆB

t h tY is, alternatively, the rolling forecast from 

the thick model or the OLS method.  Notice that, since the smaller RMSE statistic was obtained with 

the systematically selected ANN, it is being used as benchmark in the comparison.  Henceforth, all 

Fair and Shiller charts of results will follow the same format, in all of them the t-statistic from the 

systematic coefficient will be shown as benchmark. 

 

1 quarter 2 quarters 4 quarters 8 quarters

ANN (systematic) 0.00863 0.00728* 0.00835* 0.00761*

ANN (thick model) 0.01010 0.01055 0.01053 0.01042

OLS 0.00892 0.00904 0.00919 0.00966

Phillips Curve Model.  RMSE in Rolling Forecast for Different Horizons

Chart 1

* Differs from Thick model, ** differs from OLS, *** differs from both techniques.  (5% Diebold-

Mariano)

1 quarter 2 quarters 4 quarters 8 quarters

Systematic 0.3770 0.095* 0.2360 0.1120

Thick model 0.9920 0.9990 0.9346 0.7030

Systematic 0.5240 0.0711* 0.1771 0.023*

OLS 0.8000 0.6911 0.9895 0.6430
* Indicates a superior forecast performance (10%)

Chart 2

Phillips Curve.  Fair and Shiller P-values for Different Methodologies 

and Forecast Horizons
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From Chart 2 it is possible to confirm that when the horizon is two quarters the systematically 

chosen ANN outperforms the thick modeled ANN.  For all other horizons it is not possible to 

discriminate among those methods.  Additionally, by means of this test, it is also possible to 

distinguish between Systematic ANN forecasts and OLS’s at least for horizons of two and eight 

quarters, in both cases the first technique performed better in the rolling exercise.  

In a nutshell, there is evidence suggesting that in the case of the Phillips Curve, systematically chosen 

ANN improve out-of-sample forecasts over thick and OLS’s when the forecast horizon are two and 

eight quarters.  Systematic ANN is also a better forecaster than OLS when h is two quarters or 

longer. 

 

4.2 Treasury Bills Model. 
What is shown in Chart 3 is equivalent to Chart 1 but it uses Treasury Bills Model and its set of 

information for generating forecasts.  Again the smaller RMSE are achieved in the case of the 

systematic ANN method in all four horizons.  In this case though, according to Diebold-Mariano test 

RMSE significantly differ only with respect to OLS technique when the forecast horizon is one year.  

In all other cases it is not possible to reject the null of an equal RMSE statistic. 

 

When the other contrast is applied, there is not too much coincidence among results.  Chart 4 

includes P-values from applying Fair-Shiller test.  Those results show that the systematic technique 

outperforms thick and OLS approaches only when the forecast horizon is one quarter.   

 

The case of Treasury Bills Models can be summarized by saying that there is evidence supporting the 

hypothesis that the systematic method is a better forecaster than the thick model and the OLS only 

when the horizon is one quarter.  Additionally, when one year ahead forecast is made, OLS is 

outperformed by the systematic method. 

1 trimestre 2 trimestres 4 trimestres 8 trimestres

ANN (systematic) 0.01113 0.01423 0.01280** 0.01357

ANN (thick model) 0.01247 0.01399 0.01314 0.01400

OLS 0.01378 0.01430 0.01455 0.01396

Chart 3

Treasury Bills Model.  RMSE in Rolling Forecast for Different Horizons

* Differs from Thick model, ** differs from OLS, *** differs from both techniques.  (5% Diebold-

Mariano)

1 quarter 2 quarters 4 quarters 8 quarters

Systematic 0.0058* 0.5559 0.9222 0.4481

Thick model 0.1116 0.0062 0.0000 0.0427

Systematic 0.0539* 0.1574 0.0656 0.1774

OLS 0.3575 0.1018 0.0139 0.0235
* Indicates a superior forecast performance (10%)

Chart 4

Treasury Bills Model.  Fair and Shiller P-values for Different 

Methodologies and Forecast Horizons
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4.3 Monetarist Model. 
When the monetarist model is used the smaller RMSE for all horizons is still reached by means of 

using the systematic approach.  This is exposed in Chart 5 which also shows that such technique 

achieves a statistically significant difference in all horizons when compared with the Solera op. cit. 

method.  When horizons are less than 8 quarters, Diebold-Mariano test indicates that systematic 

RMSE statistic significantly outperformed also OLS.  In this case, the thick models technique gets no 

different measure of out-of-sample  forecast performance. 

 

If we turn to what can be said from the Fair-Shiller test, Chart 6 shows that when the forecast 

horizon is two quarters or longer, the systematic approach outperformed Solera’s method, this is 

consistent with chart 5.  Forecast from the Systematic technique can also be distinguished as 

superior to OLS’s when h is two or eight quarters.   Finally, Fair-Shiller test cannot discriminate 

between Systematic and Thick modeled ANNs for neither horizon. 

 

 

In order to summarize the case of the Monetarist Model it is only necessary to say that the 

systematic approach outperforms Solera and OLS method and does not statistically differ from the 

Thick model technique. 

 

 

 

1 trimestre 2 trimestres 4 trimestres 8 trimestres

ANN (systematic) 0.01154** 0.01112** 0.01107** 0.01039*

ANN (thick model) 0.01245 0.01258 0.01351 0.01270

ANN (Solera 2005) 0.02012 0.01828 0.01777 0.02135

OLS 0.01317 0.01311 0.01287 0.01287

Monetarist Model.  RMSE in Rolling Forecast for Different Horizons

Chart 5

* Differs from Solera, ** differs from OLS and Solera, *** differs from Thick and Solera, 

****differs from all techniques  (5% Diebold-Mariano)

1 quarter 2 quarters 4 quarters 8 quarters

Systematic 0.0264 0.8698 0.5914 0.1544

Thick model 0.0259 0.2481 0.5232 0.9408

Systematic 0.1402 0.000* 0.000* 0.000*

Solera 0.6821 0.9075 0.5299 0.1785

Systematic 0.2525 0.006* 0.1313 0.0341*

OLS 0.5955 0.1623 0.7765 0.4935

* Indicates a superior forecast performance (10%)

Monetarist Model.  Fair and Shiller P-values for Different 

Methodologies and Forecast Horizons

Chart 6
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4.4 Non-Nested Model Comparison. 
From the above analysis, it is possible to conclude that, although not statistically different in all 

cases, at least in terms of absolute RMSE value the systematic ANN forecast shows higher accuracy 

in out-of-sample forecast.  This is valid not only across models, but also for all horizons. Then by 

selecting this technique and comparing its forecast accuracy among non-nested models, it will be 

possible to determine which set of information, Phillips Curve, Treasury Bills or Monetarist, 

generates better results. 

For those three sets of information, Chart 7 contains RMSE statistics from the same 8-step rolling 

exercise.  The shorter indicator is achieved by the Phillips Curve in all four horizons.  According with 

the Diebold-Mariano contrast, the difference is statistically significative when compared with the 

Treasury Bills method across all horizons.  When the forecast is for shorter periods ahead, such 

difference becomes also meaningful when compared with what the Monetarist Model produces. 

 

When Fair-Shiller test is applied both the Phillips Curve and the Treasury Bills Model ANN’s forecasts 

contain useful and independent information for all but the two quarters horizon, this means that it is 

not possible to identify one of the models as a superior forecaster than the other except when we 

consider a half-year ahead forecasts. On the other hand, the Phillips Curve set of information 

outperforms Monetarist’s for horizons of two and four quarters, otherwise it is not possible to 

discriminate between them by means of this test.  All this is shown in Chart 8. 

 

In order to summarize the non-nested model comparison we can say that, either from Diebold-

Mariano or Fair-Shiller test, for all horizons there is evidence of a better out-of-sample  forecast 

accuracy of the Phillips Curve set of information over the Treasury Bills one.  When shorter horizons 

are considered, there is also evidence that support Phillips Curve superiority over Monetarist Model.  

When we are interested in one year ahead or longer forecasts, the Phillips Curve and Monetarist 

Model are statistically alike.  

1 quarter 2 quarters 4 quarters 8 quarters

Phillips Curve (Systematic ANN) 0.00863** 0.00728** 0.00835* 0.00761*

Treasury Bills (Systematic ANN) 0.01113 0.01423 0.01280 0.01357

Monetarist (systematic ANN) 0.01154 0.01112 0.01107 0.01039

Non-Nested Models.  RMSE in Rolling Forecasts for Different Horizons

* Differs from Tresury Bills, ** differs from Treasury Bills and monetarist.  (5% Diebold-Mariano)

Chart 7

1 quarter 2 quarters 4 quarters 8 quarters

Phillips Curve (Syst. ANN) 0.0000 0.000* 0.0000 0.0000

Treasury Bills (Syst. ANN) 0.0049 0.8836 0.0000 0.0487

Phillips Curve (Syst. ANN) 0.000* 0.000* 0.0000 0.0000

Monetarist Model (Syst. ANN) 0.2444 0.1152 0.0116 0.0000

Chart 8

Non Nested Models.  Fair and Shiller P-values.

* Indicates a superior forecast performance (10%)
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5 Conclusions  
Since main objective of this paper is examining whether to allow nonlinearities in some economic 

models of inflation estimated with Costa Rican data yields any improvement in forecast 

performance, conclusions will firstly cover such issue.  It was found that ANN selected following 

systematic approach reduces RMSE of out-of-sample forecasts when compared with OLS method 

applied over the same set of information.  Such reduction is statistically meaningful for two out of 

four horizons in the case of Phillips Curve and Treasury Bills Models and for all horizons in the case of 

the Monetarist Model.  The conclusion supports the existence of relations among variables that are 

not fully captured by standard lineal econometric methods due to the nonlinear nature of some of 

them.  

When comparing among techniques for selecting the best ANN forecast, the systematic approach 

achieved smaller RMSE statistics than the Thick models method, yet such difference is statistically 

important basically in the case of the Phillips Curve Model.  Based on this, and considering that the 

Thick model technique requires specifying several factors in an ad-hoc manner (for instance: how 

many different architectures will be averaged, how many forecast will be excluded from the 

trimmed average, etc), the author would rather recommend the systematic approach over the Thick 

models technique. 

When choosing among different architectures for ANNs, a systematic approach that controls not 

only for in sample fit of different number of hidden nodes but also for the number of training 

periods yields a significant improvement in forecasting accuracy.  This comes from comparing in the 

case of the Monetarist Model, the performance of what we have called Solera’s ANN with the 

systematic technique. In all horizons there is a statistically meaningful difference between those 

methods.  In other words, it is worth controlling for over-fitting. 

It was mentioned at the beginning of the paper that it is common for Phillips Curve relationships not 

to offer quite as good forecasts of inflation as some other non-structural specification when Costa 

Rican data are used.  It was shown in the paper that this changes when nonlinear relations between 

variables are allowed.  Phillips Curve processed by means of systematic ANN outperformed the 

Monetarist and Treasury Bills sets of information and the difference is statistically important when  

short run forecast horizons are considered. 

Results from this paper suggest that systematic ANN’s forecast of inflation may be used confidently 

for instance in early stages of the macroeconomic simulation exercises as a base scenario to feed 

into the Quarterly Projection Macroeconomic Model.  Additionally, short run quarterly forecasts of 

inflation can also be obtained through systematic ANN Phillips Curve estimation, such forecasts 

significantly improve upon what can be obtained from other models or methodologies analyzed in 

this paper. 
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7 Appendixes  
 

Appendix A. 

Linear Models Adjustments and Test Specification Diagnosis 
 

Phillips Curve. 
 

Estimated equation: 
4 6

0.04694 024838
ˆ 1.006386 0.496096 b

t t t
t
E Y

 

 

Breusch-Godfrey Serial Correlation LM Test:  
     
     

F-statistic 0.688531     Prob. F(2,42) 0.5079 

Obs*R-squared 1.337765     Prob. Chi-Square(2) 0.5123 
     
     

 
 

Heteroskedasticity Test: White  
     
     

F-statistic 0.950438     Prob. F(2,43) 0.4248 

Obs*R-squared 2.922748     Prob. Chi-Square(3) 0.4037 

Scaled explained SS 2.609530     Prob. Chi-Square(3) 0.4558 
     
     

 

 

 

0

1

2

3

4

5

6

7

-0.02 -0.01 -0.00 0.01 0.02 0.03

Series: Residuals
Sample 1997Q2 2008Q4
Observations 47

Mean       0.000610
Median   0.000504
Maximum  0.027684
Minimum -0.024312
Std. Dev.   0.010582
Skewness  -0.087386
Kurtosis   3.058103

Jarque-Bera  0.066430
Probability  0.967331

Normality Test
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Treasury Bills. 
 

Estimated equation:

 
1 1

0.011499 0.098733 0.016043
ˆ 0.029622 0.766945 0.02766t t tF

  

 
 

 

Breusch-Godfrey Serial Correlation LM Test:  
     
     

F-statistic 1.450597     Prob. F(2,41) 0.2462 

Obs*R-squared 3.039892     Prob. Chi-Square(2) 0.2187 
     
     

 
 

Heteroskedasticity Test: White  
     
     

F-statistic 1.063498     Prob. F(5,40) 0.3949 

Obs*R-squared 5.397574     Prob. Chi-Square(5) 0.3693 

Scaled explained SS 4.564853     Prob. Chi-Square(5) 0.4713 
     
     

 

 

 

 
 

 

0

1

2

3

4

5

6

7

-0.02 -0.01 -0.00 0.01 0.02 0.03

Series: Residuals
Sample 1997Q3 2008Q4
Observations 46

Mean       4.07e-18
Median  -0.001454
Maximum  0.029388
Minimum -0.023464
Std. Dev.   0.011233
Skewness   0.308527
Kurtosis   2.935695

Jarque-Bera  0.737708
Probability  0.691526

Normality Test
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Monetarist Model. 
 

Estimated equation:

 
1 4 8

0.030595 0.013364 0.01523
0.84897 0.039372 1 0.044385 1t t t tM M

 
 

 
 

Breusch-Godfrey Serial Correlation LM Test:  
     
     

F-statistic 0.108350     Prob. F(2,47) 0.8975 

Obs*R-squared 0.184310     Prob. Chi-Square(2) 0.9120 
     
     

 

 
 

Heteroskedasticity Test: White  
     
     

F-statistic 2.016472     Prob. F(3,48) 0.1241 

Obs*R-squared 5.820036     Prob. Chi-Square(3) 0.1207 

Scaled explained SS 4.844175     Prob. Chi-Square(3) 0.1836 
     
     

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

-0.02 -0.01 -0.00 0.01 0.02

Series: Residuals
Sample 1996Q1 2008Q4
Observations 52

Mean       0.000383
Median   0.001759
Maximum  0.024058
Minimum -0.027235
Std. Dev.   0.011920
Skewness  -0.254456
Kurtosis   2.907448

Jarque-Bera  0.579706
Probability  0.748374

Normality Tets
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Appendix B. 

Chosen Neural Network Architectures in Systematic Method 

 

Forecast 

horizon Q Z Q Z Q Z

1
3 1200 3 2200 5 600

2 3 900 3 1600 5 600

4 3 1400 3 1700 5 900

8
3 1300 3 1900 5 600

Treasury Bills Monetarist ModelPhillips Curve




